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The coupling of a system of ordinary equations ror convection cl] leads 
to the conclusion that a perturbation occurring due to the heating of a 
liquid from below always varies monotonically with time [2]. Presence 
of magnetic field (in a conducting liquid) or of a rotation render the 

equations of motion uncoupled and therefore the stability of an initially 
balanced system and the nature of perturbations causing its collapse 
should be investigated separately. Chandrasekhar has considered the 

effect of magnetic field [3] and of rotation [4,51 on the convection in 
a horizontal plane layer. The consideration of a layer of infinite length 

which ordinarily admits the analysis of a phenomenon in a “pure form” in 
this particular case would only obscure the physical nature of the prob- 

lem. In a finite strip, however, (all dimensions of which are of the 

same order) these basically new effects which are occasioned by the mag- 

netic field or by rotation, are discernible in a distinct fashion. 

Below, using a simple example. one considers the effect of rotation 
on the stability of a liquid heated from below which occupies a closed 
space whose linear dimensions are of the same order in all directions. 
As will be shown in Section 6, the aagnetic field in a conducting liquid 
is equivalent to the rotation of liquid with regard to all aspects con- 

cerning its stability. 

1. In a gravitational field 

g = - gr, y= 1 (1.1) 

the liquid occupies a volume, the walls of which move with a uniform 

angular velocity 

384 
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B = say (l-2) 
rotating around a convson axis. ‘lhen in the basic stationary motion of the 
liquid is a solid body rotation. 
stable [61. If 

The rotation of a solid hody is always 
one heats the liquid from below, establishing thus a 

steady vertical temperature gradient 

vTo =-AAy v -3) 

then, due to the continuity, the basic motion will be stable for suffi- 
ciently small values of A. One needs to add to the ordinary convection 
equations Lll the terms for centrifugal and Coriolis forces (we shall 
consider a slow motion developing within the liquid) and retain only 
terms which are linear with regard to perturbation. In the following it 
is assumed that the following condition is satisfied* 

Q2 1 << g ( 1 Is the characteristic dimension of the (1.4) 
considered layer) 

Then the equations of motion and of thermal conduction are 

. v=- vf+~v*v+agST+2QW~) 
$= Alrw + XV’T, vv= 0 

(i -5) 

We introduce characteristic parameters I, I~, I’,, where u1 and T, are 
determined in such a way that 

(vi 1 Tr)’ =agx/Av V.6) 

lhen Equations (1.5) become 

$= -Vf+V’v+CyT+D(vxr) 

Pit = CYV + VT, vv=o (1.7) 

‘lhe following dimensionless quantities enter into these equations 

P z v I,%, Cs = agAb JVX, Da = 4Qp14/va 

Here, P is the Prandtl number, @ is the Reyleigh number, 02 is the 
Taylor number. 

The linear equations (1.7) do not contain time explicitly. Consequent- 
ly, all the quantities may be considered to be proportional to exp(ht) 

l That is, one does not consider here fast movement of large volumes. 
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and we should investigate the limiting case 

hv= - vf+~~v+CyT+D(vxy) 

APT = Crv + vaT, vv=o 

with corresponding boundary conditions on 

sign of the real part of h determines the 

stable when Re h < 0. 

the walls of the layer. The 

stability: the equilibrium is 

(1.8) 

2. As an example we shall consider a cubic volume of unit side length. 

The following will be the boundary conditions on the walls of cube 

PV, 
T=v,=~=O on the upper and lower wall 

8% aT 
(2.1) 

vn=,,=,,= 0 on the side walls 

Here n is a unit vector normal to the wall (the z axis is directed 

upward.) These conditions are somewhat artificial; however*, the obtained 

results give qualitatively a correct picture of the behavior of liquid 

within the container with solid walls. Equations (1.8) with the boundary 

conditions (2.1) can be solved immediately. For the coordinate projec- 

tions of velocity and temperature we obtain 

v, = ?$ sin mrcx co9 rury cot3 lnz 

vvo cos mnx sin my cos In2 

zz:T/ = iv=“, 

(m, n, I = 1,2,‘. . .) (2.2) 

T”} cos matzcos nny sin lnz 

The convective motion resulting is characterized by periodicity in 

all directions. ‘Ihe entire volume of the cube is subdivided into equal 

cells; in each of them the liquid moves in the some fashion. Each cell 

has the form of a parallelogram whose sides bear the ratio 6’ : n-’ : I-’ 
to each other. On the walls of the cells the conditions (2.1) are satis- 

fied. 

In order to find the admissible values of A we proceed as follows. To 

the first equation of the system (1.8) we apply the rotational operator 

(curl) twice. We obtain 

h(V xv)=v2(vxv) tC(vT xr>+~(rv>v (2.3) 

hv% = v4v- C [(TV) VT - rvaTl- D(yv) (v x v) (2.4) 

l Refer to the work of Rayleigh where the theory of stability has been 

originally formulated. 
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We substitute solutions (2.2) into the second Eyuation (1.8) and also 
into (2.3) and (2.4), dot multiplied by y. After simple transformations 
one obtains for the amplitudes of velocities and temperatures a system 
of three homogeneous algebraic equations. The condition for their solu- 
tion 

(A + .kz)kz - (ks - d9)C 5tlD 

C - (AP + k3 0 = 0 (2.5) 

nlD 0 -(h + k*) 

ka s d tmP + np + isI (2.6) 

gives the equation for the eigenvalues h of the limiting problem (1.8). 

3. We shall consider in greater detail the stability of the equi- 
librium with respect to the largest motion(among all those possible in 
the cube). To this end we shall put into (2.5) m = n = 1 = 1. We intro- 
duce the following notation 

p = h/3x?, r = 2c= I 27n4, r = Da / 2%~~ (3.1) 

Developing the determinant (2.5) and utilizing (3.1) we obtain for p 
the cubic equation 

where 

aPS+PIL2+r~++=0 (3.2) 

a= P, p=2p+1, r=2+P+Pr-r, 6 = 1 + z - r (3.3) 

‘he roots of Equation (3.2) coincide with the eigenvalues of the 
system (1.8) up to a multiplying factor 3vr2. Therefore (see the end of 
Section 1) the onset of instability is equivalent to the appearance in 
solutions of Equations (3.2) of a real part in I.I equal to zero. Inasmuch 
as the problem here consists in the appearance of a convective motion 
following the instability - both, for the stationary and the nonstation- 

ary case - then having in mind both of these possibilities it is neces- 
sary to look for solutions in which (1) the imaginary part of P equals 
zero, that is, solutions which are time independent, and also (2) solu- 
tions where the imaginary part of ~1 differs from zero, that is, solutions 
which depend periodically on time. 

Solutions of 
equation (3.2)) 

Solutions of 

the first type are possible when 6 (the free member of 
equals zero, i.e. 

r=1+z (3.4) 

the second type occur when the coefficients (3.3) fulfill 
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the relation a6 = py i.e. for 

(3.5) 

Two out of three roots of Equation (3.2) are imaginary and conjugate. 
‘Ihe square of their modulus equals 

IpJa++-1 (3.6) 

From that it can be seen that 

P<l (3.7) 

is a necessary condition for the exist- 
ence of periodic solutions (imaginary 
eigenvalues,). Liquid metals satisfy 
this coridition. For example, for 
mercury at room temperature P = l/40. 
In the following it will be assumed 
that condition (3.7) is fulfilled. 

The relations r = r(l) expressed by 
Equations (3.4) and (3.5) are shown on Fig. 1 as curves AB andFH, re- 
spectively. On the same figure is drawn the curve KFL, the equation of 
which is 

A (r, i) = 4Pr* - 112p’r - (1 - P)W + 4&[3P% - 5(1 -4ylr- 
- 47IP”z+ (1 - P)V = 0 (3.8) 

A(r, T) is the discriminant of the cubic Equation (3.2). In the area 
located above the curve KFL, Equation (3.2) has only real solutions; 
underneath that curve two roots of the equation are complex conjugate. 
The coordinates of point F are 

r. = 2 / (1 - P), 7. = (1 + P) / (l.- P) (3.9) 

4. ‘Ihe analysis indicates that out of the three roots of Equation 
(3.2) one (let us denote it by I.+,) is always negative, that is the cor- 
responding forced perturbation decays for arbitrary values of Rayleigh 
or Taylor numbers. 

Table 1 shows the values the remaining two roots c\~ and ~~,acquire in 
each of the five zones defined by means of numbers in Fig. 1. ‘Ibe bound- 
aries between these zones are given by AB, FH and KFL, the equations for 
which have been given in the previous paragraph. 
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It is seen from the table that in the first two zones the equilibrium 

of the liquid is always stable but 
the dsmping of perturbations occurs 
differently in each of them: in do- TABLE 1. 

main 1 it is always monotonic and in 
domain 2 perturbations similar to 
damped oscillations are possible. In 

Nonequi libriu 

domains 3, 4 and 5 the equilibrium of Sones 1m P,# 0 
Rob>0 Rep*>0 

the liquid is unstable. In domains 4 
and 5 the resulting perturbations 
grow monotonically with time; in do- 

1 X 

main 4 perturbations of two types (or : 
X X X 

:: 
X 

linear combination thereof) appear to 5 

be unsafe, while in domain 5 only one 
type is unsafe. 

A different situation obtains in domain 3. An arbitrary perturbation 
can be described here as a linear combination of a single monotonically 
damped and two oscillatory motions with increasing amplitude (correspond- 
ing to the numbers nO, pl, p2 1. Obviously, no such combination will yield 
a solution monotonically increasing in time. Therefore, a stationary 
regime is altogether impossible in domain 3. The equilibrium in this do- 
main is unstable with regard to periodic perturbations whose frequency 
equaLs f Im 3a2&,. - _ 

5. On Fig. 1, in addition to the 
most intense perturbations with m = 

indicated stability curves for the 
n = 1 = 1, it is necessary to plot 

similar curves for all possible m, 
n, 1. TABLE 2. 

given the coordinates of point F of 
the Taylor number and the ordinates 

Table 2 contains data necessary 
for the construction of stability 
curves corresponding to the first 
four different m&nations of 
numbers In, n, 1. ‘fhis calculation is 
done for mercury P = l/40. In the 
fourth and fifth row of Table 2 are 
the graph whose abscissae indicate 
the Rayleigh number. ‘Ihe tangents of 

the angles between the line AB and the abscissa axis (angle cp) and the 
line FH and the abscissa axis (angle qt) are given in the last two rows 
of the table. It is necessary to remember however, that these numerical 
estimates are obtained from the solution of a problem with unrealistic 
boundary conditions (2.1). 

‘lhe above indicated effects will be observed in an experiment with 
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somewhat higher values of Rayleigh and Taylor numbers. 

6. In C8I it was shown that the stability of equilibrium of a conduct- 

ing liquid placed in a magnetic field 

H = Hy (6.1) 

is determined by corresponding numbers A (in [81 the numbers A have re- 

verse sign) of a limiting problem 

av=-vi+v%+CyT+M(yv)h, Ov=vh=O 

APT = Cyv + v=T, hNh = v2h + M (‘IV) v (6.2) 

Here h is the additional magnetic field which is generated within the 

liquid by the outside field H. Beside P and C, the following dimensionless 

quantities enter into these equations 

N = 4ar.v~ I ce, Ma = H2ad2 I PVC” 
(square oi the 

Hartman number) 

On the nonconducting walls of the cube we set the following boundary 

conditions 

hz 
3h,/&t = 0 

is continuous on the upper and lower walI 

on the side walls 
(6.3) 

With the boundary conditions (2.1), (6.3) the problem (6.2) can 

readily be solved. Retaining for ~1 and r the notations (3.1) and intro- 

ducing S = Ma/9w2, aft,@ simple calculations we obtain for u the Equa- 

tion (3.2) with coefficients 

a=PN, T=I+P+N+~~-_N~ 

P=P+N+PN, 8=i+sir (6.4) 

Instead of (3.6) and (3.7) we will have now correspondingly 

l~t2=~(N~S-,), p<N (6.5) 

Mercury does not meet condition (6.5): P/N* 10’. It will be noted 

that the square of the Hartman number enters into (6.4) in exactly in 
the same way as the Taylor number into (3.31. Therefore, if v (see the 
figure) is identified with s, then all that has been said about stability 
in Section 4 is also valid in the present case. 

This work has been performed under the direction of V.S. Sorokin, to 

whom the author wishes to express his gratitude. 
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